Branner-hubbard-lavaurs Deformations for Real Cubic Polynomials with a Parabolic Fixed Point

نویسنده

  • SHIZUO NAKANE
چکیده

In this article, we study what we call the Branner-HubbardLavaurs deformation of real cubic polynomials with a parabolic fixed point of multiplier one. It turns out that the existence of non-trivial deformations corresponds to the oscillation of stretching rays and discontinuity of the wring operation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Branner-Hubbard motions and attracting dynamics

Branner-Hubbard motion is a systematic way of deforming an attracting holomorphic dynamical system f into a family (fs)s∈L, via a holomorphic motion which is also a group action. We establish the analytic dependence of fs on s (a result first stated by Lyubich) and the injectivity of fs on f . We prove that the stabilizer of f (in terms of s) is either the full group L (rigidity), or a discrete...

متن کامل

Semi-continuity of Siegel Disks under Parabolic Implosion

We transfer the lower semi-continuity of Siegel disks with fixed Brjuno type rotation numbers to geometric limits. Here, we restrict to Lavaurs maps associated to quadratic polynomials with a parabolic fixed point.

متن کامل

Cubic Polynomial Maps with Periodic Critical Orbit, Part I

The parameter space for cubic polynomial maps has complex dimension 2. Its non-hyperbolic subset is a complicated fractal locus which is difficult to visualize or study. One helpful way of exploring this space is by means of complex 1-dimensional slices. This note will pursue such an exploration by studying maps belonging to the complex curve Sp consisting of all cubic maps with a superattracti...

متن کامل

Cubic Superior Julia Sets

Bodil Branner and John Hubbard produced the first extensive study of iterated complex maps for cubic polynomials in Picard orbit [Acta Math., 160(3-4):1988, 143-206]. Since then few researchers worked on Julia sets for cubic polynomials. In 2004, Rani and Kumar [J. Korea Soc. Math. Educ. Ser. D; Research in Math. Educ., 8(4):2004, 261-277] studied cubic polynomials in superior orbit and gave im...

متن کامل

Puiseux Series Polynomial Dynamics and Iteration of Complex Cubic Polynomials

We study polynomials with coefficients in a field L as dynamical systems where L is any algebraically closed and complete ultrametric field with dense valuation group and characteristic zero residual field. We give a complete description of the dynamical and parameter space of cubic polynomials. In particular we characterize cubic polynomials with compact Julia sets. Also, we prove that any inf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009